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1., Formuiation of the problem. Definition of the concept of oscil-
latory chains. Let us consider a mechanical system constrained by holo-
nomic, explicitly time independent comstraints. Let gq,. ..., q, be
Lagrangian coordinates for the system, while Gpr oo én are the corre-
sponding generalized velocities. Assume that the generalized force cor-
responding to the coordinate g, can be expressed in the form

Q@ - ) — Ry @y - - ) (v=1,...,n)

Here Q, and Rv are continuous and differemtiable functions of their
arguments in the region where they are defined. For the given resisting
forces we will suppose that for any possible displacement (coinciding
with an actual one in the given case) theilr work is negative

— ERv(q'l,...,q'n)&v<0 (1.1)

v=1

Thereby and from continuity it follows that
R,0,...,00=0 (v=1,...,n)

In the simplest nonlinear case when R, = f(¢,) (v=1, ..., n), con-
dition (1.1) indicates that af(a) > 0 (a £ 0), while the requirement of
continuity indicates, in particular, that f(0) = 0. In the linear case
conditions (1.1) indicate that the dissipation is complete,

The kinetic energy T of the system will be a quadratic form of general-
ized coordinates with coefficients depending only on the Lagrangian co-
ordinates in view of the explicit independence of constraints from time

1 n
T=g 2 @ilap-- 0 08 (=)
i,]=l

The equations of motion in the Lagrangian form of second kind will be
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. 10a; ..
2a1q1+2( _76—%)%%:@_& (v=1,...,n) (1.2)
i, j=1
We will attenpt to investigate the stability in the sense of Liapunov
[1,2] of the unperturbed motion
gy = 9yo (&) 7, =0, (v=1,...,n) (1.3)
with respect to the variables q;, ..., ¢, §¢;, ..., §, (r <n).

Let us denote the coordinates and velocities for the perturbed motion

as - . -
qv=qv0(t)+uv’ quqvo(t)_*—"v ('V=1,...,n)

The differential equations of first approximation for the perturbed
motion (equations in variations) can be expressed in the form

2(“)0 - +Z i ’:i+2 ci®%,=0  (v=1,...,n)  (1.4)

i=1 i=1

< vj vi 0
o= B[+ G, GOl (G, e

i

=3 {(‘Zz)o i@+ 3 [(a(:i;qkﬂo _1 (5—2‘;%)0] G50 1) dio () — (';3 ),

v,i=1,...,n) (1.8)

where

while the index zero in a,; and partial derivatives indicates the sub-
stitution in them of

RN N S () HR 0 ) WP SN )

Let us refer to the original mechanical system as the "oscillatory
chain* with respect to the unperturbed motion (1.3) if it is possible to
choose such Lagrangian coordinates for which the coefficients (“vi)o'
bvi(t) and ‘vi(‘) are such that for some natural s < n

{a,)0 =0 (1.7
v=1,...,mi=m+41,...,n
v=m-+1,...,n, i=1,...,m)
by () = (OR,)/3g,) (1.8)
v=1,....,n,i=1,...,n)
(9R,/03.)=0 (1.9)
(v=1,....mi=m+1,..., n

v=m+41,...,n, i=1,...,m)
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cvi<t) =0 T D

(v:l,...,m;t—m+1 n(110)
Vv=m-1,...,n; i =1, m)

for all ¢ larger than some t,. Com-
ditions (1.7) to (1.10) indicate that
the matrix functions of the coeffi-
cients for system (1.4) are of the
form

04, )

0

G

e O
o lu®lz,

Upon fulfillment of conditions
(1.7) to (1.10) the equations in
variations (1.4) divide into two Fig. 1.
groups of » and n —: = equations

2, 2 R, % 0 1 1.41
um7ﬁ+ (5 %7ﬁ3 ) =0  (v=1,...,m) (111)

i==] qz

2 (2,50 dt3+ S ( q) — 4 2 e {n; =0 (v=m+1,..,n) (112)
f=m+1 i=m-1 fmmpnal

2. Determination of the equilibriom position for a free entirely
elastic oscillatory chain. The simplest example of an "oscillatory chain"
is a free entirely elastic oscillatory chain with respect to vertical
oscillations (i.e. when the unperturbed motion is a vertical oscillation
of the referred system) (see for example [3 1), Figure 1 shows a system
of N material points with masses LIVERRPINE ¥ sequentially connected by N
springs (the mass of which is neglected) with stiffnesses €1s +ovy €y
and the lengths in the unstressed state I,, ..., ly- The beginning of the
tirst spring is attached at point O while the beginnings of each of the
following springs are attached to weightless hinges with axes perpendicu-
lar to the vertical surface Oxy, thus producing plane motion.

By this means the system is constrained by only N trivial constraints:
z; =0, ..., zy=0 while the 2N Lagrangian coordinates are Ty eeey XN
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Y170 e yN’ are the rectangular coordinates of the material points =,
- The kinetic energy for this simplest case is

N
1 . .,
T=-§-k2 mk(a'kz-i—yk’)
=1

i.e. a;; = .§i.<5ij is the Kronecker delta; i, j=1, ..., N). Let us
compute the potential emergy V(x , ..., zy 7" oeees yN’) for the linear

forces of spring elasticity and gravity
N . N
=—g 2y m¥ + 5 D o [ — Ze )+ ' — 9y Pl —
K=y K==y

N
- Z el V (zp — Ty )"+ (¥ — yk_'.l 2 2.1)
k=1

considering x5 = yo' = 0 and taking only the arithmetic value of the
root. We will start with the determination of system’s position of equi-
librium for which we will consider the system

v

B_a:; = —cy®y_y {0+ ck_H) Ty —Cpyy Tpqq — el (2 — 23 )+
’ . v - §
4 — Yy )9}“/' {Zp —2p_,) + Cr4a lk+1 [(xk-i-l — )+ (yk+1 — "] f x
X(”k-ﬁ"xk)=0 k=1,...,N}) (2.2)
6V ’ ’ ’
3y, ™8T Y (o + Cpr) Yo' — ga¥r — b (@ — 2 y)* +

+ O — Ve W — Yemp) + g bt [@epr — 20 + W — 9T X
X (!h;.;.; —¥)=0 (k=1,....N)

with Nyl = !N+ 1= 0. This system possesses the solution (lower posi-
tion of equilibrium)

ze=0, /=0 +h)+...F+hr (k=1,...,N) (2.3)

where A j denotes the static elongation of the jth spring
7»5=(m1-+m)-+1+...+r.nN)g/cj Gg=1,...,N)

The found position of equilibrium will be isolated. Indeed, the
Jacobian for the system of Equations (2.2) for values of the variables
(2.3) D= DyD, where D, and D, are the determinants for Jacobian matrices
of Nth order
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il Cahe Cshe
htm T Btk hth o ... 0
_ Cahg cghg + Caha . cshs 0
D= I+ A e o P T P
enhy
0 0 0 e -
In+hy
while D, is obtained from D,, for 1, = 0, Ak =1 (k=1, ..., N). Having

utilized the formula for the determinant of the Jacobian matrix we find
D= II Cx A'k
Q+x

which is the required result.

Let us introduce the variables Y. which represent deviations along
the vertical of the kth material point from the lower equilibrium posi-

tion
Y=¥ —l+M—...—(+d)  (k=1,...,N) (2.4p

At the lower position of equilibrium x; = ... = zy =y, = ... = yy="0.
For determination of positions of equilibrium other than the lowest one,

we will write the system of Equations (2.2) in the form
— O (T — Tp_y) e [0 — 2 ) + (G + Mg+ Y — ) — 1 +
+ s @rgy — Za) gy (@ — 2 + iy + Mg + Vg — 9P — 13 =0 (2.5)

— e (e g+ Uk — Ui ) e [ — 2 )P+ G+ M+ Y — 9 AT — 1) +
F g Ukga T+ Mpgy g1 — Y0 Uiy [(@ gy — 2+
F gy + Mgy + Ypgy — U= =y (k=1,..., N)

Let us write the equations corresponding to &k equal N

ey By —2y_) U — Iy [y — 2y '+ Uy + Ay + Uy — Uy P13 =0
en(Un+tAn+yn—yn_ ) U — Iy @y — 2y P+ Ux + Ay +yy—yy_ ) =mye
The braced terms are not zero, because otherwiseé the second equation

could not be fulfilled. The first equation yields zy = zy_,, while the
second equation becomes

l [
N
CN(IN+A'N+yN—yN—1){1_|1N+LN+yV—yN—-1| }=mNg
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This equation always has a solution YN = Yy.1» vhile if AR.< Iy it
also has a solution IN= YN_1— ZIAP Let us consider the most common case
when the static elomgation of each spring is less than its length in the
unstressed condition

A <1 (k=1,...,N) (2.6)

Treating Equations (2.5) corresponding to k= N-1, N- 2, ..., 1
analogously, we will find 2" equilibrium positions of a free oscillatory
chain: = ... = 2y 0

0, Y1, Yn—1
n= { — 2L, = {yl‘— 20, " 7T YN @7

It must be noted, however, that the planes of motion for each of the
N material points are different and parallel to the vertical plane.

3. Asymptotic stability in the large of the lower equilibrium posi-
tion in the presence of resistance forces. The equations of motion (1.2)
for the free entirely elastic oscillatory chain are expressed quite
simply as

o V. . . .
M, = ~-5€—Rk(xl,..., TN Yps -0 YN)
s k=1,...,N) G.1)
™Yk = T By, — Ry ik @p - Yy YN

Let us indicate by inf V the smallest value of the potemtial energy
for a free entirely elastic oscillatory chain among ( —-1) positions of
equilibrium different from the lowest ome. In the phase space x;, ...,
TN Ypr cees XN Epaoee., &y, ¥po voes Iy we define a closed region G,
by the inequality

T4V infV

Theoren. In the presence of resistance forces satisfying condition

(1.1), the lower position of equilibrium for a free entirely elastic

oscillatory ch?in is asymptotically stable for initial deviationms zl(°),

L) xN ' 11 0 y seey Y (0); ‘.1 » oreer X (0)' i (0)5 ey ’N(O)

of o)} ;
within the region G. This indicates that 1‘ +¥ satisfies the in-
equality

TO 4 VO < infV (3.2)

(0) )

vhere substitutions x = x; voeers Y§= yN(o were made in T(O) and
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A

Proof. Let us take the total emergy of the system as the function v
of Theorem 14.1 in [4 ]

v=T+V—-V(0,...,0) 3.3)

Compute ¥(0, ..., 0), i.e. the value of potentisl energy at the lower

equilibrium position
N

N
1
V©,...,00=—g Emk[(ll+}.1)+...+(lk+kk)]—~2— Dex (2 — 1,3
k=1 k=1
We will show that V- V(0, ..., 0) will be a positive definite func-
tion of Eys oeeey END Yy oeee, XN in the sense of Liapunov. Let us trans-
form V-~ ¥(0, ..., 0) into the form

N
1
V—V{0,...,0) =~ Ck [(:L‘k - 1’),-...1)2 -+ (yk — yk...l)z -+ 2lk (lk + 7"}; “+ Yy — !Ik_l)““
2 Kw=),
— 21 V {zy — xk_l)ﬁ Ay Y Yy ¥l

and establish the validity of inequalities
(Ik — 'J:k____l)z -+ (yk - yk_1)2 -+ 21},: (lk -+ Ak -+ Yp— yk—l) =
=2 V(xk — 3z P+ A+ Y — Ypy (3.4)

k=1, ..., X; 3, = ¥y = 0. The right-hand side of the inequalities
can be expressed as

(2 — wk_l)z + (Vg — Vg + L+ 4, (0 + 20y)

and is obviously positive. Let us sgquare the inequalities (3.4) where
upon transformation we obtain

[(xk - xk._l)z -+ (yk — yk_.l)z -+ 211‘- (yk - !/k_.])]2 -+

=1,...,N
+ al gy [ — 232 4 (Y — )1 >0 (k ’ )

The derived inequalities are valid and the simnltaneous existence of
the equality sign is possible only for S Al R 0
Consequently, the total energy (3.3) of the system will be a positive
definite function of all Lagrangian coordinates and velocities in the
Liapunov sense. Its derivative, on the strength of Equation (3.1), is

d N . .
T THV=V 0 ... 0] =— D (Biz+ Ry, 9 <O
k=1

In view of definition of the considered resistance forces, the equat-
ing to zero in the last inequality is possible only for the position of
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equilibrium. A motion which started in the G domain camnot leave it, and
in it the position of equilibrium will be unique. Thus the conditions of
Theorem 14.1 of {4 ] are fulfilled. The theorem is proved.

Note. It is possible to establish formulas for the radius of a sphere
or the edge of a cube inscribed in a closed 4N dimensional region Go.

4. Equations in variations for vertical oscillations of the systeam.
Let us write out in detail Equations (3.1)
Mm@y = — ¢ (T — Ty )+ ey (B — B+ G b (B — 7)) (7 — 7' +
+ G+ Y — yk—l)z]_l/2 — gy Ly @y — %) (@ — )+
F gy Mgy Y — V)T — Ry @ Ty Yy -2 YY)
My = — L ey ey — € Wi — Y—y) + Cpq Wiegs — ¥p) +
T+l U+ A+ ¥ — Ypy) [, — T * 4+ A 4y — yk_l)z]-l/' - 49
- -1
= ppr s Gy F My F Yags — ¥ 1@y — 3+ Uiy + Mg F+ Vi — "1™ —
_RN~+k(x1""’xN;yl""’yN) k=1,...,N)

Let us assume that the projections on the x axis of the resisting
forces satisfy the conditions

R, (0,...,0,9,...,y5)=0 (k=1,...,N)

System (4.1) possesses the solution (unperturbed motion (1.3))

T =2y (=0, Y=Yy, () (k=1,...,N) (4.2)
Here yho(‘) satisfy the system of equations
. 1 . .
Yo T ';,; RN+)¢ ©,....,0 Yigr- -+ yNo) ——pkyk_l,o—f— (4.3)
(P F Prgs Pregt) Yro — Pkt Prr Yiet1,0 =0 (k=1,...,N)
and
[ m
pk=r_n.’i (k=1,...,N; py,,=0), p.k=mkk (k=2,...,N; pyy, =0)
—1

Let us verify the fulfillment of conditions (1.7) to (1.10) (n = 2N,
a = N). Conditions (1.7) and (1.8) are satisfied since

a,;

mB,; v=1....N i=1,...,2N)
m,_n0,; (v=N+1,...,2N; i=1,...,2N)
Condition (1.9) requires that

oR R
k N4k
— | =0, — 1 =0 kil=1,...,N 4.4
( ayl )0 ( axl )0 ( ) ( )
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where the zero index demotes that after differentiation the values of
the arguments from (4.2) are substituted. Conditions (4.4) will be
satisfied, in particular, if Rk are independent from yl, and RN+k

from ’l (k, 1 =1, ..., N). Ve shall assume the conditions (4.4) to be
fulfilled.

Condition (1.10) requires that

o i
(m)():() G k=1,...,N)

which is fulfilled, as suffix 0 signifies, in particular, that after
differentiation assumed £ T ... T ay =0, Consequently, the equations
in variations (1.11) and (1.12) take place for the perturbed motion
(Xk= 0+£k, ,Yk: yko(t) *T)k; k=1, ..., N

N
d’§k+_1_2 (ﬁ) &, v ) £ =0
di? my = a,}i mk = lkaz oz,

N N
i U ("Ef!ﬁ) AL (_"’1> ny =0
de® me ay'i 0 dt me S Y0y, )y

or in the expanded form

d oR d — =
gk Z ( k) §1 — P {1—— [1+Tk+(yk0(t) lkyk—l'O(t»] 1} Erm—

¥, (&) — Ypo N 72
— &+ Prtg Py {1 - I:i + Tk4a + 0 & ] } & — §k+1) =0 (49

b
N
e o 2-(6RN+k) dn;

ar t o, m, 5, o @t — Pyfg—y + (P Popps Preiy) M — Wiy Prepr Mg = 0
i=1 i
(k=1,... ,N) (4.6)
= Mylly (k=1, .., N; 1y, =0)

Let us note that these equations are derived despite the fact that
the question of stability in the large for the lower position of equi-
librium during fulfillment of condition (1.1) is solved by the theorem
of Section 3. One considers, first, the case when condition (1.1) is not
fulfilled (for example, during partial dissipation), second, use of
Equations (4.5) to (4.6) for determination of stability of umnperturbed
motion (4.2), and third, the absence of resistance forces. This con-
servative case is treated next.

5. Conservative case. In the absence of resisting forces, the free,
entirely elastic oscillatory chain is a conservative system. Deviations
yko(t) of its masses from the lower position of equilibrium during
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vertical oscillations (unperturbed motion) satisfy the System (4.3) for
R N =0 (k=1, ..., N), describing small oscillations of Sturm systems
gﬁ. The equation of frequencies @ for this system is a characteristic
equation of a certain Jacobian matrix.

@ — (P1~+ papa) WaP2 0... 0
1Py 0> —(pz2+ Psps) Msps. . . O -0
| 0 0 0 .0 —py

Equations (4.5) from the system of equations for the first approxima-
tion of perturbed motion will have for R. =0 (j=1, ..., 2N) either
periodic coefficients in case of commensurate frequencies Wy, oo, @O,
or almost periodic in the opposite case. The stability investigation of
unperturbed motion is in both cases a considerably difficult problem.

The investigation is facilitated by the fact that in the conservative
case all solutions of system (4.6) are bounded. This follows from the
positiveness of the eigenvalues for the above written Jacobian matrix.
The bounded nature of solutions can also be established directly by

writing the system (4.68) with RN*k =0 (k=1, ..., N) in the form
d"lk . d'Elk
&t =M @ = Pk — (Pt P Prgd) Tkt BkpaPrpaeqn (B=1,..., N)

Consider now the positive definite quadratic form of the variables
Nys «-«s Ny My --+, Ny With constant coefficients

N
1 .
U=5 A m. - b=+ (=1, n=0)
k=1

In view of the given equations, the derivative of the quadratic form
is equal to zero, which establishes the bounded nature of the solutionms.

T Examples: A single-link, free and entirely
- ] elastic oscillatory chain is represented by a

I' mathematical pendulum of mass = with a spring
{+% ©Of stiffness c and unstressed length Il (Pig.
I 2). The system of Equations (4.3) is reduced
A
)

to one equation

myo + cyo =0

where for the unperturbed motion we will have

— c
z=0, y=y(¢)=Y cos wt (“’— ;)
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The equations in variatioms (4.5) and (4.6) will be expressed as

d?t 1 d*n
Bz—2+m2[1‘1+7+Ycoswt]§:0’ an Tofn=0 (1)

Note that the fulfillment of condition (1.8) is not an intrinsic pro-
perty of the mechanical system itself and of the chosen unperturbed
motion, but is determined also by the choice of the Lagrangian coordi-
nates. Using polar coordinates in the example considered, we obtain

1 . . 1
T:7m(p2w2+p2), V:?c(p—lﬁ——mgpcosq)

and, in the absence of resisting forces, the Lagrange equations become
. . . . c
2ppgptp'p=—gpsing, p—pPP=——(p—1)+gcosg

The vertical oscillation of the mass m or unperturbed motion now be-
comes in previous notation

e=9=0 p=p{t)=1+A+Y coswt
Formula (1.5) yields for the coefficient bll(')
bu (t) = 2mpopy £ 0
which indicates violation of condition (1.8). Equations in variations

for the perturbed motion (= 0+ @, p = py(t) + P will assume the
following form in polar coordinates

ax@ asin T dd T

a7 2T T y+acosrdr T T 7+ acose P =0
azpP A Y
d_c—z-«]-PZO (T:—l-,azT,‘c:(nL‘)

As we can see, the appearance of a first derivative term in the equa-
tion in variations is possible also in a conservative system.

Returning to Cartesian coordinates and introducing nondimensional
time r = wt, we write down the differential equation of perturbed motion
in the form

a2t T+acost d2
Tt T rTacoss b tHEE =0, o 40ty t =0

Here, as well as above, y and a are nondimensional parameters ex-
pressing the ratios of static elongation and amplitude of vertical
oscillation to nondeformed length of the spring

A Y
T=T. a=T

Stability or instability of a trivial solution of equations in



Free entirely elastic oscillatory chains 249

variations (5.1) is determined as such for the first of Equations (5.1).
Nevertheless, in the considered conservative case, the stability of the
trivial solution of (5.1) does not at all determine the stability of unm-
perturbed motion with respect to the variables x, y, %, y; since one of
the critical cases is involved. The instability, however, of the trivial
solution of system (5.1) involves (with possibly the exception of bound-
ary cases) the instability of unperturbed motion ([2, p.70]) with respect
to the variables x, y; z, 7.

This is dependent on the fact that the first equation in variations
has as its coefficient a periodic function, and when its trivial solution
is unstable the lowest characteristic number in the sense of Liapunov is
negative,

In considering stability of the trivial solution of equation

a2t T-+acost

T T Y Facoss =0 (5-2)

we begin with the Zhukovskii [6] criterion which assures stability when
the following inequalities are fulfilled

k? k4 1)2
7;<p(t)<( _Z ) (k=0,1,2,...)

For a< 1 + y, expressing a natural limit that the aamplitude of longi-
tudinal oscillations is less than static deformation of the spring we
have

inf p(9) =g, SUDP (W)= rgn

The Zhukovskii criterion requires the fulfillment of either inequal-
ities

1
a<y, <7 —1  (for k=0)

or inequality
1
a<—3+7 (for k=1)
For k > 1 the criterion fails.

The resulting stability region for the trivial solution of Equation
(5.2), obtainable from the Zhukovskii criterion, is shown crosshatched
in Pig. 3. This plot will be useful for comparison with the region of
instability.

In finding the region of instability by the method of small parameters
[7,8], let us take a 2s a small parameter and write down the Equation
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(6.2) in the form

P o po +ap (D atp(e D+ 15 =0

where
1
Po (T) = #r H P (‘tr T) = 2p1(1) (T) cos T (plu) (T) == 2 (1 + T)’)

In the scalar case the regions of instability in the ay plane can
touch the a = 0 axis at those points y  which are the roots of the equa-
tion

m?

2V Po(Ym)=m or Tm=fF_mi (m=1,2,...)

For y > 0 a wide region of instability (i.e. with nonzero angle be-
tween the tangents) touches only at the point Y= 1/3 with no other such
points on the y > 0 axis existing. Tangent of the slope for the tangent-
ial line will be determined in our example from the formula resulting

from Formula (8) (8]

(s))
i+ P, (’r)] 1
y S ST
\ g = =1 2
, -~
§§§§§? e This establishes, in the first approxima-
N petal tion, the instability region for vertical
N e
IR 2~ oscillations of a pendulum on a spring
N /////
3 N %—%—a+...<1<%+%a+...
O =
\:FQ.\\\ Rays bounding this region are shown by
0 s g  dotted lines in Fig. 3.
05 /
Fig. 3. From the genefal theory it follows that
since
apo
- 0
ey,

the equations of the boundaries will be analytic functions of the para-
meter a, therefore, the rejected terms are not of lower order than az.
The remaining coefficients of the expansion can be computed utilizing
the fact that on the boundary of this region of instability there exists
an antiperiodic (inasmuch as = is odd) solution. We will give the final
result: in the second approximation the region of imstability is deter-
mined from the inequalities

1 15 1,1 15
—gatpgat .. <y<gtzetgma+ ..

|-
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The curves bounding this region are shown dash-dotted in Fig. 3.

It is known from experiments [3] that the perturbation of vertical
oscillations in the presence of resisting forces takes place for the
pendulum on a spring with A = (1.3)1, i.e. for y = 1/3. The investiga-
tion of the transfer of longitudinal oscillations into tramsverse ones
was outlined by Mettler [3]. He utilizes the method of slowly varying
amplitude and phase suggested by Bogoliunbov and Krylov (9] and developed
by Mitropol’ski [10].

Conclusion. Regions of "conservative instability* will generate in
the dissipative case regions of instability of vertical oscillations.
Notwithstanding asymptotic damping of oscillations, which for not very
large dissipation will occur slowly, practically large variations of
oscillations due to autoresonance in the chain can be quite substantial
for evaluation of system performance.

I am grateful to the LGU aspirant B.G. Pittel’ who performed the cal-
culations for the example.
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