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1. Forml8tion of the problem. Definition of the concept of OEC~I- 
latory clmins. Let us consider a mechanical system constrained by holo- 
no~ic, explicitly time independent constraints. Let g1, . . . . Q, be 
Lagranglan coordinates for the system, while 41, . . . , 4, are the corre- 
sponding generalized velocities. Assame that the generalized force cor- 
responding to the coordinate g,, can be expressed in the form 

Q, (q,, . . . , q,J - R, (r;,. . . . t ia) (v=i,...,n) 

Aere Q, and R,, are continuous and differentiable fnnctjons of their 
arguments in the region where they are defined. For the given resisting 
forces we will suppose that for any possible displacement (coinciding 
with an actual one in the given case) their work is negative 

n 

- 2 R, ti,, . . . t i,, iv < 0 (1.1) 
v=1 

Thereby and from continaity it follows that 

R,(O,...,O)=O (v=f,...,n) 

In the simplest nonlinear case when 9, = f( &) (v = 1, . . . , n), con- 
dition (1.1) indicates that aj(a) > 0 (a f 0), while the reqairement of 
contfnulty indicates, in particalar, that f(O) = 0. In the linear case 
conditions (1.1) indicate that the dissipation is complete. 

The kinetic energy T of the system will be a quadratic form of general- 
ized coordinates with coefficients depending only on the Lagrangian co- 
ordinates in view of the explicit independence of constraints from time 

T=+ i ajj(q19.+.,qn)ijij (aji = ajj) 

i. I=1 

The equations of motion in the Lagrangian form of second kind will be 
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i a,i;i + 2 (~-+f&iij = Q,- R, (v = 1, . . . ) n) (1.2) 
I=1 i,j=l 

Ue will attempt to investigate the stability in the sense of Liapunov 
[ 1.2 I of the unperturbed motion 

4” = Qvo PI* 4, = Q”O (0 (v=I,...,n) (1.3) 

with respect to the variables ql, . . . , q,; Q1, . . . , 4, (r ( n). 

Let us denote the coordinates and velocities for the perturbed motion 
as 

4” = Q”O w + X”V 6” = Q”O (t) + X” (v=i,...,n) 

The differential equations of first approximation for the perturbed 
motion (equations in variations) can be expressed in the form 

where 

+ ~ b,i (t) ~ + i; C,i (t) ~i = 0 (v=l....,n) (1.4) 
i=l i=l 

(v, i = 1, . .,. , n) (1.6) 

while the index zero in si and partial derivatives Indicates the snb- 
stitution in them of 

QlO WV - * * I !7m (C 6, (09 * . . 9 i,(t) 

Let us refer to the origfnal mechanical system as the ‘oscillatory 
chain. with respect to the unperturbed motion (1.3) if it is possible to 
choose such Lagrangian coordinates for which the coefficients (si),,. 
bVi( t) and cVi( t) are such that for some natural a < n 

(Q)O = O 
(%?=I,..., m;i=m+l,...,n 
v=m+l,..., n; i=l,..., m) 

b,i (t) = (a’v)la’qi), 
(v = I,. . . , f; i = 1.. . . , n) 

W,l~4q,=O 
(v=l,..:, m;i=m+l,..., A 
v=m+l,..., n; i=l,..., m) 

(1.7) 

(13) 

(1.9) 
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C&) = 0 

(vzt,..., m; i=mfl 1 * * . , n (1.10) 
V=m+l,..., n; id, . . . . m) 

for all t larger than some t,,. Con- 
ditions (1.7) to (1.10) indicate that 
the matrix functions of the coeffi- 
cients for system (1.4) are of the 
form 

Upon fulfillment of conditions 
(1.7) to (1.10) the equations in 
variations (1.4) divide into two 
groups of a and n -: 8 equations 

s(a.ih~+~l(~)o~+ 5Cvf(t)Xi=o (v=l,...,m) (1.11) 

i=l 

$ (avi)* !3+ i: caf!; 2 + ‘-g c~~(~)x~=O (V=m+1,..., n) (1.12) 

i=m+1 i=m+l 2 0 i=m+1 

2. Determination of the ecrpilibriam position for a free entirely 
elastic oscillatory chain. The simplest example of an “oscillatory chain” 
is a free entirely elastic oscillatory chain with respect to vertical 
oscillations (i.e. when the unperturbed motion is a vertical oscillation 
of the referred system) (see for example [3 1,. Figure 1 shows a systea 
of N material points with masses sIr . . . , By sequentially connected by N 
springs (the mass of which is neglected) with stiffnesses cl, ..,, cN 
and the lengths in the unstressed state l,, . . . . IN. The beginning of the 
first spring is attached at point 0 while the beginnings of each of the 
following springs are attached to weightless hinges with axes perpendicu- 
lar to the vertical surface Oxy, thus producing plane motion. 

By this means the system is constrained by only N trivial constraints: 
z1 = 0, . . . . ZN = 0 while the 2N Lagrangian coordinates are x1, . . . . %N; 
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Y/l . . . . yN’ are the rectangular coordinates of the material points By, 

. . . . aW The kinetic energy for this simplest case is 

T= mk tika + &‘*) 
H=l 

i.e. Oij =; $ij (Sij 
is the Kronecker delta; i, j = 1, . . . , Nf. Let us 

compute the potential energy Y(X , . . . I %N; yl‘j . , . , y#‘) for the linear 

forces of spring elasticity and gravity 

mk?ri + $ i ck [txk - x,+1)* + t?.$’ -Y&l’)*] - 
k--l k=l 

considering x,, = ye’ = 0 and t8kiag only the arithmetic vaIae of the 
root. We rill start with the determination 0r system’s position of eqai- 

libriam for which we will consider the system 

av -= 
‘=k 

- ckx&-..~ + tck + $+l) Sk - Ck+l “k-,+1 - ck I, [tzk - x&a t 

+ @k - ?&jafh txk - x&-_l) + $+I ‘,+, kk+, - +” + tYk+; - Yk ) 1 f I -‘it x 
x @k$i --Sk) =o (k=l, * . .,N) (2.2) 

ZW , 
)Z 

'yk 
- mkg - ckyk_l $_ tck f Ck+l) Yk’ - Ck+lYk+; - ck lk ttxk - zk_1)* + 

+ t?!k - Yk-;)a]-” (Yk’ - ’ Yk-1) + Ck+lzk+l @Jt+l- “da + tYk+; - Yk’)‘] -% x 

x (yk+; - yk’) = 0 (k=l, . . . ,N) 

with CM+ 1 = IN+ 1 = 0. This system possesses the solution (lower posi- 

tion or equilibrium) 

xk=o, Yk’ = @I + %,) + * * * + (‘k + &kzk) (k=1,...,N) (2.3) 

where hj denotes the static elongation of the jth spring 

Xj=:(mj$-nl. 

I+1 +...+m )g/cj 
l N (j=i,...,N) 

The found position of eunilibrium will be isolated. Indeed, the 
Jacobisn for the system of Equations (2.2) for oalaes of the variables 

(2.3) D = DID1 where D, and D2 are the determinants for Jacobian matrices 
of Nth order 
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41 d2 4.3 _++ -- 
h+hl h+s2 l2+h2 

0 . . . 

case & cabs QA2 -- ---- 

Dl = 12-ta2 12442,+142 12+?b2 **. 

I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 0 0 0 . . . 

0 

0 

. . . . . . 

'NLN 

IN+', 

while D2 is obtained from D1, for lk = 0, xk = 1 (k = 1, . . . , N). Having 
utilized the forunla for the determinant of the Jacobian matrix we find 

D= fi %>O 
kEl ‘k+‘k 

which is the required result. 

Let us introduce the variables yk, which represent deviations along 
the vertical of the kth material point from the lower equilibrium posi- 

tion 

y, = y,‘- (hi- Al) - * * * - ($ + A,) (k = 1,. .* 9 *I (2.4~ 

At the lower POSitiOn of equilibrium zzl = . . . = %N = y1 = . . . = ypo. 

For determination of positions of equilibrium other than the lowest one, 
we will write the system of Equations (2.2) in the form 

- ck lxk - “k-m.1) tl, i(‘k - xk-_1)2 + tzk + A, + yk - Yk_~)2]-” - 1) + 

+ 'k+l kk+l - zk) (I,+, [(‘k+l- %)a + ($+I + hk+l + yk+l - Yfi)‘]-I” - 1) = 0 (2.5) 

- ‘k @k + A, + ?&- Yk-1) Ilk [txk - xk - 1)’ + ($ + A, + Yk - Y,+l)a]-” - 1) + 

+ 'k+l ('k+l + 'k+l + yk+, - yk) (I,+, [lxk+l - %k)* + 

+ (1k+l + kk+l+ yk+l - yk)2]+ - 1) = m& (k = i, . . . , N) 

Let us write the equations corresponding to k equal N 

CN (%N - zN_1) (1 - I, t(“N - “N-1)’ + (IN + h, + YN - YN-l)2l-1’? = o 
CN (lN + hN + yN - UN+) I1 - lN @N - 2N-l)’ + llN + hN + YN - yN_l)“l”/‘) = mNg 

The braced terms are not zero, because otherwise the second equation 

could not be fulfilled. The first equation yields %N = IN_:1 while the 
second equation becomes 

CN(1N+kN+3/N-YN-~ > 
= mNg 
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This equation always has a solution yH = yN_ 1, while if A& < lN it 

slso has a solution yN = yN_ 1- 2$ Let us consider the most common case 

when the static elongation of each spring is less than its length in the 
unstressed condition 

‘kc’, (k=f,...,N) (2.6) 

Treating Equstions (2.5) corresponding to L = N - 1, N - 2, . . . , 1 
analogonsly. we will find 2N equilibrium positions of a free oscillatory 

chain: x1 = . . . = %N = 0 

0, 
Y1= 

Yl? 
-%, ?/1--_-l,, * - - iyN= 

(2.7) 

It must be noted, however, that the planes of motion for each of the 

N material points are different and parallel to the vertical plane. 

3. Asymptotic stability is tbe large of the lower eqsilibrium posi- 
tiom in the preseaoe of resistace forces. The equations of motion (1.2) 

for the free entirely elastic oscillatory chain are expressed quite 

simply as 

. . 
rnkXR = -~-R~(;,,..-‘~N;Y~,...,YN) 

3V 
(k = 1, * * =, w 

. . 
(3 1) . 

Let us indicate by inf Y the smallest value of the otential 
for a free entirely elastic oscillatory chain among ( 3 

energJ 

-‘) positions of 

equilibrium different from the lowest one. In the phsee space zI, . . . , 

IN; yl, . . . , yN; il , . . . I iN’ y,, . . . , fN we define a closed regiou GO 
by the inequality 

T + V < inf V 

Tirrorca En the presence of resistance forces satisfying tondition 

(l.l), the lower position of equilibrium for a free entire13 elastic 

oscillatory chain is asymptotically stable for initial deviations x1 (01 , 
(0) . . . . %N (0); y (01, .'.) yN(o). i1(o) 

within the reiion G. This indic8tes khPt”# 
’ . ..’ 9N 

satisfies the in- 

equal it3 

T(O) + V(O) < inf V 

where substitutions x = x1 to) , . . . , YN = YN (0) were 

(3.2) 

made in T(O) and 
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v( 0 1 . 

Proof. Let us tahe the total energy of the system as the function v 
of Theorem 14.1 in [ 4 1 

v=T+V--(o....,o) (3.3) 

Compute V(0. . . ., O), i.e. the value of potential energy at the lower 
equilibrium position 

mk [tzl +.$) + . . . + (‘k + hk)l - + $ ck (lk* - a,‘) 
k=l k=l 

le rill shor that V - V(0, . . . , 0) will be a positive definite func- 
tion of x1’ . . . , “N; yl, . . . , yN in the sense of Liapunov. Let us trans- 
form V - V(0. . . . , 0) into the form 

V-V(O....,O)=$- 5 ck [b-k - zk_1)2 + (Yk - ?/k+)’ + 2zk (‘I, + ‘k + 2/k - Yk-I)- 
k=l 

- 21k r/(“k - zk-l)” + (lk + nk + ?!k - Yk-1 )*I 

and establish the validity of inequalities 

@k - 2k_1)2 + (yk - ?,k-1)2 + 21k (‘k + ak + yk - Yk-_l) > 

>, 21, I/(zk - Sk_+)’ + (lk + hk + Yk - ?.ik-_l)” (3.4) 

(k= 1, . . . . Ifi z. = y. = 0). The right-hand side of the ineuuslities 

can be expressed as 

(Sk - “k-1)’ + (Yl, - Yk-1 + $&” + l, ($ + 2h,) 

and is obviously positive. Let us spaare the inequalities (3.4) where 

upon transformation we obtain 

[@,‘ - ‘k-l)* + (Yk - Yk_1)’ + 21, (Yk - Yk-l)la + 

+ 41&k [txk - “k-$ + (Yk - Yk_# > o 
(k=i,...,N) 

The derived inequalities are valid and the simultaneous existence of 
the equality sign is possible only for I~= . . . = zN = yl = . . . = yr = 0 
Consequently, the total energy (3.3) of the system will be a positive 
definite function of all Lagrangian coordinates and velocities in the 
Liapunov sense. Its derivative, oa the strength of Equation (3. l), is 

-&T+V--V(0,...,0)+ 5 (&Zjr + &,, ?&, d o 
k=l 

In view of definition of the considered resistance forces, the equat- 
ing to zero in the last inequality is possible only for the position of 
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equilibrium. A motion which started in the C domain cannot 
in it the position of equilibrium will be aniaue. Thus the 
Theorem 14.1 of [ 4 1 are fulfilled. The theorem is proved. 

246 

leave it, and 
conditions of 

Note. It is possible to establish formulas for the radius of a sphere 
or the edge of a cube inscribed in a closed 4N dimensional region C,. 

4. Eqmatioms in variations for vertical oscillatioms of the systek 

Let us write out in detail Equations (3.1) 

mkxc= - ck txk - x&._I) + $$I txk_tI - %I+ ck lk txk - %-_l) [@J( - zk_I)a + 
2 -‘h +(zk+hk+Yk-Yk_l) 1 - ck+l ‘I,+, (“k+l - “k) ibk+1- Zk)’ + 

+ (Ik+l + hk+l+ yk+l- yk)2]-“z- Rk (i,, . . . . k,; !i,* . *. B !&,I 

. . 
mkYk = - % lk + ‘k+l ‘k++, - ck (Yk - yk-1) + ‘k+l (Yk+l - Yk) + 

+ Ck lk (lk + A, + Yk - yk-1) [(“k - “k-1)’ + (lk + hk + Yk - yk-l)al-“z - (4.1) 

- ++I ‘k+l (‘k+l + &+I + Yk+l- Yk) [(“k+l- Z,&2 + &+, + &+; + &+I - @I-“’ - 
. . 

- R,v_+k (xl, . . . , Z,KJ; Y1t . . . , Yjv) (k=l,...,N) 

Let us assume that the projections on the L axis of the resisting 
forces satisfy the conditions 

R, (0, . . . (0; y,, . . . , &) = 0 (k = 1,. . . ) N) 

System (4.1) possesses the solution (unperturbed uot ion (1.3)) 

Zk = ZkO (t) =_ 0, Yk = !+,, (t) (k=i,...,N) (4.2) 

Here ykO( t) satisfy the system of equations 

?$,, + f R,+, (9, . . . 9 0; &’ . . . , &‘o) - Pkyk-1. o + (4.3) 

+(Pk + pk+l pk+x) yko - pk+l pk+l yk+l, 0 = o (k=i,....N) 

and 

Pk=-$ (k = 1,. . . , iv; PNfl = O), pk= mk (k=2,..., 
mk-l 

N; PN+~ = 0) 

Let us verify the fulfillment of conditions (1.7) to (1.10) (n = 2N. 
B = M). Conditions (1.7) and (1.8) are satisfied since 

( 

w%i (v=l ,...I N; i=l,..., 2N) 
Q = 

mv-Nbvi (v=N+~ ,..., 2N; i=i ,..., 2N) 

Condition (1.9) reduires that 

, (%],=O (k,Z=i ,..., N) (4.4) 
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where the zero index denotes that after differentiation the values of 
the arguments from (4.2) are substituted. Conditions (4.4) will be 
satisfied, in particular, if Rk are independent from iI, and RN+& 
from il (k, 1 = 1. . . . , JV). We shall assume the conditions (4.4) to be 
fulfilled. 

Condition (1.10) requires that 

(i, k = 1,. . . , N) 

which is fulfilled, as suffix 0 signifies. in particular. that after 
differentiation assumed x1 = . . . = zN = 0. Consequently, the equations 
in variations (1.11) and (1.12) take place for the perturbed motion 

(‘k = 0 + c,. y& = y&,,(t) + T)&; k = 1, . . . , N, 

or in the expanded form 

1 + r 
k (t+.-~- 

(Yk+l, ,-,@) - Yk,, @)I -’ 

'k+l I> 
(tk - f&+1) = o (4*5) 

Pk'lk-1 + (Pk s;pk+l PK+l) qk - pk+l Pk+l qk+l = ’ 

(k = 1,. . . ,N) (4.6) 

Tk = ‘kjlk (k = 1, . . . . , N; ~~~~ = 0) 

Let us note that these equations are derived despite the fact that 
the question of stability in the large for the lower position of equi- 
librium during fulflllneat of condition (1.1) Is solved by the theorem 
of Section 3. One considers, first, the case when condition (1.1) is not 

fulfilled (for erample, during partial dissipation), second, use of 
Equations (4.5) to (4.6) for determination of stability of unperturbed 
motion (4.2). and third. the absence of resistance forces. This con- 
servative case is treated next. 

5. Conservative case. In the absence of resisting forces, the free, 
entirely elastic oscillatory chain Is a conservative system. Deviations 
y&e(t) of its masses from the lower position of equilibrium during 
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vertical oscillations (unperturbed motion) satisfy the System (4.3) for 

& 
= 0 (k = 1, . . . . N). describing small oscillations of Sturm systems 
The equation of frequencies o for this system is a characteristic 

equation of a certain Jacobian matrix. 

m2 - (Pl + Pm) Pa 0 . . . 0 

Pm o*-((m+iwa) pm. . . 0 =o 
. . . . . . . . . . . . . . . . . . . . . . . . . 

I O 0 0 . . . d-pN 

Equations (4.5) from the system of equations for the first approxlna- 
tion of perturbed motion will have for Rj = 0 (j = 1. . . . , 2h’) either 
periodic coefficients in case of commensurate frequencies 01, . . . . oP 
or almost periodic in the opposite case. The stability investigation of 
unperturbed motion is in both cases a considerably difficult problem. 

The investigation is facilitated by the fact that in the conservative 
case all solutions of system (4.6) are bounded. This follow from the 
positiveness of the eigenvalues for the above rritten Jaoobian matrix. 
The bounded nature of solutions can also be established directly by 
writing the system (4.6) with RN+k = 0 (k =- 1, . . . , N) In the form 

Consider nou the positive definite quadratic form of the variables 

‘11* . . . . ‘I,“; 41, . ..t ?jN rith constant coefficients 

N 

u=;r, 111. . . pk [Pk hk - qk-1)’ + ik’l @1= 1, 'lo=01 
k=l 

In vien of the given equations, the derivative of the quadratic form 
is equal to zero, which establishes the bounded nature of the solutions. 

Examples: A single-link, free and entirely 
elastic oscillatory chain is represented by a 
mathematical pendulum of mass m with a spring 
of ‘stiffness c and unstressed length 1 (Fig. 
2). The system of Equations (4.3) is reduced 
to one equation 

mi0+cy0=0 

uhere for the unperturbed motion ue rill have 

Fig. 2. 
z ZE 0, y = yo (t) = Y cos at (a=lc) 
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The equations in variations (4.5) and (4.6) will be expressed as 

d2E 
&F+02 I- c 1 

1 + r + Y cos at 1 E = 0, (5.1) 

Note that the fulfillment of condition (1.8) is not an intrinsic pro- 
perty of the mechanical system itself and of the chosen unperturbed 
motion, but is determined also by the choice of the Lagrangian coordi- 
nates. Using polar coordinates in the example considered, we obtain 

T = + m (p2$ + $), v = ; c (p - l)2 - mgp cos cp 

and, in the absence of resisting forces. the Lagrange equations 

2 p p cp +p$ = - gp sin ‘p, i; - p+ = -t (p - 1) + g cos q 

The vertical oscillation of the mass a or unperturbed motion 

coues in previous notation 

Q=QorO. p = po (t) = 1 + h + Y cos wt 

Formula (1.5) yields for the coefficient bl,(t) 

& 0) = 2w0lj0 zg 0 

become 

nor be- 

which indicates violation of condition (1.8). Equations in variations 
for the perturbed motion (4 = 0 + a’, p = pb( t) + P will assume the 
folloring form in polar coordinates 

m a sin ‘c 
e-21+7+ncoszdz 

da)+ T 
lf~+acosT 

Q=O 

d2P 
B SP=O ( 

T=-$, axy_ 1 , Z=Ot 
> 

As we can see, the appearance of a first derivative term in the equa- 
tion in variations is possible also in a conservative system. 

Beturning to Cartesian coordinates and introducing nondimensional 
time r = at, we write down the differential equation of perturbed motion 
in the form 

SE ’ + a ‘OS ’ ZF+l+r+acosr E + H (~9 E, q1) = 0, 2 + rl+ x (~9 E> ?I = 0 

Here, as well as above. y and a are nondimensional parameters ex- 
pressing the ratios of static elongation and amplitude of vertical 
oscillation to nondeformed length of the spring 

Stability or instability of a trivial solution of equations in 
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variations (5.1) is determined as such for the first of Equations (5.1). 
Nevertheless, in the considered conservative case, the stability of the 
trivial solution of (5.1) does not at all determine the stability of un- 
perturbed motion with respect to the variables I, y, i, j; since one of 
the critical cases is involved. The instability, however, of the trivial 
solution of system (5.1) involves (with possibly the exception of bound- 
ary cases) the instability of unperturbed motion ([2. p. ‘70 1) with respect 
to the variables X, y; i, y. 

This is dependent on the fact that the first 
has as its coefficient a periodic function, and 
is unstable the lowest characteristic number in 
negative. 

equation in variationa 
when its trivial solatlon 
the sense of Liapunov is 

In considering stability of the trivial solution of equation 

@f 7 + a cos z 
dt8.+i+~+acosv k=O (5.2) 

we begin with the Zlwkovskii M criterion which assures stability when 
the following inequalities are fulfilled 

k2 (k + i)a 
I$ d P (4 Q 7 (k = 0, i, 2,. . .) 

For a < 1 + y, expressing a natural limit that the amplitude of longi- 
tudinal oscillations is less than static deformation of 
have 

r--a 
inf~(r)=~+~____,, 

7+a 
suPPw=l+r+a 

The Zhakovskii criterion requires the fulfillment of 
ities 

the spring we 

either inequal- 

1 
aQr* adT---r (,for k = 0) 

or inequality 

ad-++7 

For & > 1 the criterion fails. 

(for k = 1) 

The resulting stability region for the trivial solution of Equation 
(5.2). obtainable from the Zhukovskii criterion, is shown crosshatched 
in Fig. 3. This plot will be useful for comparison with the region of 
instability. 

In finding the region of instability by the method of small parameters 
[7,81, let us take a as a small parameter and write dom the Equation 
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(5.2) In the form 

where 

T 
PO (7) = 1+-r 9 Pl (r* 7) = 2p,(‘) (r) co.7 T ( 1 

P,(l) (7) = 2 (1 + T)’ 
> 

In the scalar case the regions of instability in the ay plane can 
touch the a = 0 axis at those points y, rhich are the roots of the equa- 
tion 

2p$&J=m 0r L=& (m = 1, 2, . . .) 

For y > 0 a ride region of instability (i.e. with nonzero angle be- 
tween the tangents) touches only at the point y1 = l/3 with no other such 
points on the y > 0 axis existing. Tangent of the slope for the tangent- 
ial line will be determined in our example from the formula resulting 

from Formula (6) [81 

x*=zk 
P,(l) (T) 

[ I 
1 

dpold’r y=y, = =b l 

This establishes, in the first approxima- 
tion, the instability region for vertical 
oscillations of a pendulum on a spring 

+-+a+. . . <r<++++... 

Rays bounding this region are shorn by 
dotted lines in Fig. 3. 

Fig. 3. From the genePa theory it follows that 
since 

dpo 
d7 IYCr,+O 

the equations of the boundaries will be analytic functions of the para- 
meter a, therefore, the rejected terms are not of lorer order than a2. 
The remaining coefficients of the expansion can be computed utilizing 
the fact that on the boundary of this region of ingtability there exists 
an antiperiodic (inasmuch as a is odd) solution. We will give the final 
result: in the second approximation the region of instability is deter- 
mined from the inequalities 

1 t 
d-w 

3 
2 a+&e+ . . . <y<++$a+,$z~+ . . . 
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The curves bounding this region are shown dash-dotted In Fig. 3. 

It is known from experiments [3] that the perturbation of vertical 
oscillations in the presence of resisting forces takes plsce for the 

pendulum on a spring with A = (1.3) 2, i.e. for y = l/3. The investiga- 
tion of the transfer of longitudinal oscillations into transverse ones 
was outlined by Yettler [31. He utilizes the method of slowly varying 
amplitude and phase suggested by Boeollubov and Krylov [91 and developed 
by ultropol’ ski [lo]. 

Conclusion. Regions of ‘conservative instability. will generate in 
the dissipative case regions of instability of vertical oscillations. 
Notwithstanding asymptotic damping of oscillations, which for not very 
large dissipation will occur slowly, practically large variations of 
oscillations due to autoresonance in the chain can be quite substantial 
for evaluation of system performance. 

I am grateful to the LOU aspirant B.G. Pittel’ who perforned the cal- 
culations for the example. 
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